

RECOM.

Relocatable Coastal Ocean Model

Mike Herzfeld April 2016

O&A www.csiro.au

Motivation #1 - more models

- CSIRO CEM has been characterizing coastal scales for 25+ years (back to Port Philip Bay study).
- Cannot hope to gain overall system understanding on a case by case basis.
- Develop a tool to outsource coastal system characterization;
 - Allow increased uptake of coastal models by non-modellers.
 - Generates a pilot model >90% optimized with minimal user inputs.
- Combined integration of many models developed by many people can start to address overall system understanding.
- RECOM is such an automated re-locatable modelling tool for the GBR.

eReefs nested marine modelling suite

Global products:

- OceanMAPS (10km)
- ACCESS-A (12km)

Motivation #2 – higher resolution

- High resolution models are required around reefs and into estuaries.
- Accepted nesting ratios (5:1 at nesting boundaries) preclude higher resolution than ~1 km using two nests, with one being 4 km;
 - 10 km (OceanMAPS) to 4 km (GBR4) @ 2.5:1
 - 4 km allows fast model runtime essential for basic calibration and BGC ensemble DA (parameter estimation).
 - 4 km (GBR4) to 1 km (GBR1) @ 4:1
 - 1 km is very computationally expensive large ensembles difficult.
- RECOM can supply local high resolution domains;
 - Resolution in the domain interior to 10s of metres.
 - Don't have to model the whole GBR in order to study local areas.

RECOM provides:

- Hydrodynamic, wave, sediment transport and biogeochemical outputs on a user defined grid.
- Hindcasts possible from 2010 onwards.
- The grid is curvilinear, with multiple branches allowed.
- User optimization of land mask allowed.
- Choice of mask and bathymetry datasets.
- Choice of freshwater inputs.
- Choice of sediment/ BGC parameterisations.
- User interacts via a Google-style interface.
- Inline error handling.
- Hydrodynamics based on ROAM, operated by RAN.

Ocean Dynamics (2009) 59:21-46 DOI 10.1007/s10236-008-0158-1

RECOM workflow

RECOM processes

RECOM uses web based interface

Hydrodynamic grid generation – simple grids.

Effort required: < 1 hour.

User chooses edge of domain and grid orientation.

RECOM adds land mask and bathymetry.

Complex curvilinear grid generation

Effort required: hours to days.

User adds grid branches, rivers inputs and alters bathymetry.

Grid and mask editing

Model forcing specification

Model parameter specification

RECOM test areas

Fitzroy Estuary

FITZROY RIVER / KEPPEL BAY

Last updated: 19-Jun-2015 02:07:17

• Heron Island

HERON Model

Last updated: 17-Jun-2015 05:04:46

Fitzroy – salinity comparison.

Fitzroy – fine sediment comparison.

Fitzroy – total nitrogen comparison.

Heron Island - bathymetry

Heron Island – Temperature comparison

Heron Island – BGC comparison

Heron Island - Corals

Initial conditions

- Optimized _ _ recom 2 - - - recom 1 Aragonite outside lagoon 3.8 Aragonite 9.8 3.4 05/Jan 12/Jan 19/Jan 26/Jan Aragonite inside lagoon Aragonite ω 05/Jan 12/Jan 19/Jan 26/Jan Aragonite in deep section 05/Jan 12/Jan 19/Jan 26/Jan

Coral interpolated from GBR4

Whitsundays

Grid and bathymetry

Improved estuaries – 2-way nesting

• Dynamic freshwater input does OK at approximating salinity at the estuary mouth.

• Better result obtained by resolving the estuary to beyond salt wedge penetration.

• Use 2-way nesting.

Two way nesting salinity solution

RECOM conclusions

- RECOM is easily configurable by non-specialists.
- RECOM delivers stable and robust solutions.
- Hydrodynamics delivers a comparable solution to optimized models.
- Model skill degrades through sediment transport to BGC,
 - Primarily attributed to initial condition distributions in the sediment.
- Require the ability to customize initial sediment distributions in RECOM.
- RECOM delivers a good first order view of a system,
 - Further optimization requires specialist intervention,
 - RECOM is only as good as the forcing applied to it (river inflow, benthic distributions...).

Thank you

Coastal Development and Management Mike Herzfeld

- t +61 3 6232 5167
- e mike.herzfelde@csiro.auw http://www.emg.cmar.csiro.au/www/en/emg.html

OCEANS AND ATMOSPHERES

www.csiro.au

